Acids and Bases

Unit objectives

- Q: What makes a solution acidic or basic?
- Q: What about an acid/base makes it acidic/basic?
- Q: How does and acid/base produce H+/OH-
 - In other words: What are the ways in which a reaction can produce H+ or OH-
- Q: How do I quantify the amount of H+/OH- in solution?
- Q: Can you indicate the difference between a strong acid and a weak acid.
- Q: What does it mean for a reaction not to go to completion or equilibrium?
- DO: Be able to write Hydrolysis and Ka expressions
- DO: Calculate the pH of a strong acid.
- DO: Calculate the pH of a weak acid.
- Q: What happens when you mix an acid into a base?
- Q: How do you determine the pH of an unknown acid/base?
- Q: What is a salt?
- Q: Can you determine the general acidity of a salt?
- Q: Can you complete a titration and interpet a titration curve.

What makes something acidic or basic?

Acids

all need to be in water (aq)

turn litmus red turn litmus blue

ex: vinegar, milk, soda, apples, citrus fruits

react with metals to form H₂ gas

(always) produces H₃O⁺¹ produce OH⁻¹

Bases

alkaline (another name)

electrolytes electrolytes

caustic |corrosive, caustic

ex: ammonia, lye, antacid, baking soda

have "H" in 1st part of formula formula often ends with "OH"

consumes OH-1 consumes H+1 or H₃O+1

Proton (H+) donor | Proton (H+) acceptor

slippery feel

bases have bitter taste

acids have sour taste

Hydrogens will balance the overall charge to zero... (like ionic)

-ous acid

 H^{+1} PO_4^{-3}

hydro_

ic acid

 H_3PO_4

-ic acid

What makes something acidic?

Anything that can -produce H₃O+ ions

hydrolysis only (react with water)

$$HX + H_2O \longrightarrow X^{-1} + H_3O^{+1}$$

acids

- -must be aqueous
- -need water to produce hydronium ion

What makes something basic?

Anything that can -produce OH- ions

hydroysis:

$$X^{-1} + H_2O \longrightarrow HX + OH^{-1}$$

ionization:

the concentration of H₃O+ and/or concentration of OH-1 determines the pH (measure of acidity)

Hydrolysis- reaction with water

acid base

$$HCI + H_2O \longrightarrow H_3O^{+1} + CI^{-1}$$

 $H^+ \longrightarrow hydronium ion$
acidic
base acid
 $NH_3 + H_2O \longrightarrow NH_4^{+1} + OH^{-1}$
 $hydroxide$
basic

amphoteric -- water can act as an acid or a base

Can OH⁻¹ and H₃O⁺¹ exist together?

auto-ionization of water - is always happening

$$2 H_2 O \longrightarrow H_3 O^{+1} + OH^{-1}$$

in pure water at 25° C: $[H_3O^{+1}] = [OH^{-1}] = 1 \times 10^{-7}$

brackets mean concentration

a very small amount ionizes

Ionization constant of Water,
$$K_w = [H_3O^{+1}][OH^{-1}] = 1 \times 10^{-14}$$

 $(10^{-7})(10^{-7})=10^{-14}$

pure neutral water

Why is the H⁺ so important?

Draw a hydrogen atom: one proton and one electron

Draw an hydrogen ion:

+

A Hydrogen ion is just a proton!

Every acid base reaction is an exchange of an H⁺ (a proton)

So each reaction contains an acid and a base.

 $NH_4^+ + H_2O => NH_3 + H_3O^+$

Acid Base

H+ donor H+ acceptor

Which reactant is the acid?

NH₄⁺ (the one donating H⁺)

Which reactant is the base?

H₂O (the one accepting the H⁺)

the presence of H₃O⁺¹makes it acidic

H₃O⁺¹ hydronium ion (H⁺¹) OH⁻¹ hydroxide ion

CONJUGATE ACIDS and BASES

Conjugate: Substance after H⁺ had been donated or accepted ESSENTIALLY SAME ELEMENT/MOLECULE...EXCEPT FOR H⁺

Note: Any ACID becomes a conjugate BASE (and VISE-VERSA)

$$NH_3(aq) + H_2O(1) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$
base acid conj conj
acid base

$$NH_{4}^{+}(aq) + OH(aq) \rightleftharpoons NH_{3}(aq) + H_{2}O(l)$$
acid base conj conj
$$A \qquad B \qquad base \qquad acid$$

Pick out the acid, base, and the conjugates.

•
$$CO_3^{-2}$$
 + $2HI \rightarrow H_2CO_3$ + $2I$ -